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Abstract 

This paper examines wavelet analyses for detecting and 
characterizing printing defects. Positive wavelet features for 
this application include localized space-frequency properties 
for characterizing defects of limited spatial support (in 
contrast with the Fourier analysis, which has no spatial 
localization over the analysis region). In addition, the scale 
based analyses of wavelets mimic properties of human 
vision system (HVS) that can be useful for developing 
thresholds consistent with visual masking and sensitivity. 
This study examines simulated defects in monochromatic 
images. Examples illustrate how defects, such as banding, 
graininess, and streaking appear in the wavelet domain. 
Wavelet statistics for characterizing printing defects are 
suggested and their performance tested through Monte 
Carlo simulations. Simulation results compare the perfor­
mance of several popular wavelet kernels, such as 
Daubechies, symlets, and biorthogonal splines. The influ­
ence of wavelet properties, such as smoothness and 
symmetry, on performance is discussed. Detection and 
estimation results of defects in noise show that symlets 
generally perform well for characterizing all defects con­
sidered. While all wavelets performed well for the banding 
defects, the biorthogonal spline wavelets performed signifi­
cantly worse for estimating graininess defect properties. 

Introduction 

Useful characterizations for printing defects should mimic 
the way the human visual system (HVS) senses and 
perceives these defects. Frequency domain models using 
Fourier methods have been used because HVS properties 
have been primarily described in the frequency domain, and 
the computational properties of Fourier methods are 
efficient and reliable.1-4 When an observer evaluates a print 
sample, he or she compares prints and focuses on known 
defect patterns. This is a complex process, involving many 
levels of neural and cognitive processing, that is difficult to 
model directly. As a result, limitations of the Fourier based 
models to predict the human perception of printing defects 
have been observed.4 Therefore to explore other potential 
ways to characterize printing defects, this paper considers 
an alternative approach using wavelets. Wavelet transforms 
have similar properties to that of Fourier methods, in that 
spatial signals can be decomposed into frequency bands 
analogous to the HVS, and efficient computational 

structures exist for many wavelets.5 An advantage of the 
wavelet approach is that several choices of the transform 
kernel exist, which may allow for more efficient defect 
detection, and consequently provide more insight into an 
individual’s image quality evaluation process. 

As a first step for applying wavelets to printing defects, 
this paper compares the ability of different wavelet types to 
efficiently characterize common defects such as banding, 
graininess, and streaking. It is often not clear which 
statistics to apply to characterize the wavelet coefficients of 
a given signal. Therefore, this initial study also proposes 
several wavelet statistics for characterizing printing defects 
and examines their performance with a Monte Carlo 
simulation. The wavelets considered are limited to discrete 
orthogonal or biorthogonal types, which are computation­
ally efficient. Continuous wavelets have a greater potential 
to match the dynamics underlying the defect appearance; 
however the choices for scaling and translating the wavelet 
are infinite, and reconstruction kernels to obtain the original 
signal may not exist, significantly limiting its flexibility. 

The Fourier approach for modeling defects has been 
1-4described in several publications. A characterization for 

the graininess defect is the noise power spectrum (NPS). 
The NPS shows a linear spectral pattern on a log scale that 

3is characterized by its spectral slope. Streaking also has 
been modeled in this way, except a steeper spectral slope 
exists in one of the orientations. The primary characteri­
zation for banding has been the FFT of the one-dimensional 
signal created from either averaging the two-dimensional 
signal orthogonal to the banding, or averaging the FFTs 
amplitudes from signal segments. The harmonic amplitudes 
of the periodic banding structure are used to characterize the 
banding pattern.1,4 Statistics analogous to those used on the 
FFT coefficients and NPS values are examined for wavelet 
coefficients. 

Wavelet Characterizations 

All wavelet decompositions considered in this study can be 
implemented with a finite impulse response filter (FIR) 
structure. For a given 2-dimensional signal y(n,m), the 
wavelet decomposition from level l to level l+1 is given by: 

(l )(l +1) (n, m) = ∑ ∑  y11 (2n − i,2m − j)Kuv (i, j) , (1)yuv 
i j 

where level 0 is the original signal and the wavelet kernel, 
Kuv, is composed of 4 different combinations of high and 
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low-pass filters applied in vertical and horizontal 
orientations. The subscripts on y indicate the orientation of 
its wavelet kernel. Let the wavelet function (high-pass filter) 
be denoted by h(i) and the scaling function (low-pass filter) 
be denoted by g(i). Then a class of separable kernels in 2 
dimensions for the wavelet decomposition can be defined 
as: 

K11 (i, j) = g(i)g( j), K12 (i, j) = h(i)g( j), 
(2) 

K 21 (i, j) = g(i)h( j), K 22 (i, j) = h(i)h( j). 

Subscript 11 refers to the low-pass filter in both the vertical 
and horizontal directions. In going from one level to the 
next, y11 from the previous level is used, as indicated in Eq. 
(1). The scaling by 2 of the arguments of y11 denotes a 
dyadic subsampling that occurs in going from one level to 
the next. The levels represent octave subbands, since 
subsampling scales down the frequency axis of the wavelet 
kernel by a factor of 2, thereby reducing its effective cutoff 
frequencies without changing the coefficients. Wavelet 
decompositions of printing defects are presented in Figs. 1 
through 3. Each defect was exaggerated to clearly 
demonstrate its signature in the wavelet domain. 

Figure 1 (a) shows an image degraded by banding. The 
banding profile was taken from a measured pattern 
presented in Cui et. al.4 The banding was applied additively 
by scaling the banding pattern to 10% of the pixel value in 
the original image. This resulted in a 20 dB image-to­
banding power ratio throughout the image. The wavelet 
kernel used in this example was the biorthogonal spline 
wavelet of order 4 on decomposition and 4 on 

5 reconstruction. The 2-level wavelet decomposition matrix 
is shown in Fig. 1 (b), where the coefficients in this figure 
are presented as the log of their absolute values. The 
decomposition matrix containing the wavelet coefficients at 
2 levels is the same size as the original image due to the 
subsampling. The y11 output is always placed in the upper 
left of the wavelet decomposition matrix while, the outputs 
from kernels K12, K21, and K22 are placed in the upper right, 
lower left, and lower right, respectively. For each level of 
decomposition, this is repeated and the y11 region replaced to 
result in the pattern seen in Fig. 1 (b). 

The banding defect signal exhibits low frequency 
content in the horizontal direction and high frequency 
content in the vertical direction, which matches the K12 

kernel properties. Filter outputs from these kernels are 
placed horizontally in the 2-level wavelet decomposition 
matrix. As shown in Fig. 1 (b) the horizontally-placed 
wavelet coefficients in the decomposition matrix strongly 
respond to the horizontal lines of the banding defect, while 
coefficients placed diagonally and vertically exhibit no 
observable response to the banding defect. The K12 kernel 
captures energy directly related the high contrast horizontal 
edges. A Fourier decomposition would also respond to this 
periodic edge structure, however the energy would be 
spread out over many coefficients.4 The wavelet coefficients 
shown in Fig. 1 (b) capture the edge features with a small 
set of very localized coefficients. On the other hand, 

wavelet coefficients from sinusoidal banding would not be 
well localized, since the sinusoid is much smoother than the 
wavelet kernels. For a sinusoid pattern the Fourier 
decomposition would result in the most localized 
coefficients. The wavelet coefficient response on banding 
edges suggests that metrics based on these coefficients may 
have a potential to respond to defects as the HVS does, 

4since it was shown that the threshold for visually detecting 
banding was lower for patterns with sharp transitions (like a 
square wave) than for the sine wave patterns of equal 
amplitudes. 

(a) (b) 

Figure 1. (a) Banding defect, (b) 2-level Biorthogonal spline 
wavelet decomposition 

Figure 2 (a) shows an image degraded by graininess 
artifacts. The graininess pattern was simulated by passing 
white Gaussian noise through a filter with a spectrum 
similar to what has been reported for measured data. A 
spectrum with a linear roll-off (on a log-linear scale) in both 
the horizontal and vertical direction was used with a 
negative slope of -0.17 dB/(cycles/mm). In general, the 
grain patterns are readily observed in the low frequency 
regions of the image and are masked in the high-frequency 
texture regions. In this image, however, the grain 
modulation at 10% is so strong that it shows up in almost all 
regions and masks details in the hat, hair, and feather 
texture regions, and reduces contrast overall. A 3-level 
wavelet decomposition was performed with an 8th order 
Daubechies wavelet. The wavelet decomposition shows the 
presence of the graininess energy at every level. The first 
level decompositions shown in Fig. 1 (b) compared to that 
in Fig. 2 (b) shows the edge features in Fig. 1 have 
relatively high coefficient values while those corresponding 
to the flat fields have low values. Figure 2, on the other 
hand, shows the corresponding flat fields filled with 
graininess energy. The intensity values of the graininess 
energy follow the intensity values of the original image. 
This occurs because the scaling of the noise process was 
added to each pixel in the original image based on a 
percentage of the original image intensity. The random 
patterns with properties similar to that of graininess have 
been shown to be efficiently characterized by orthonormal 
wavelets,6 therefore suggesting that wavelets may be a more 
efficient way to represent the graininess defects. 
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(a) (b) 

Figure 2. (a) Graininess defect, (b) 3-level Daubechies wavelet 
decomposition 

Figure 3 (a) shows an example of streaking artifacts. 
This was generated as the graininess artifacts were, except 
that the spectral roll-off was much faster for the vertical 
direction (-13 dB/Hz in vertical and -0.87 dB/Hz in the 
horizontal direction). Thus the streaking artifacts are 
composed of random features with more low frequency 
content in the vertical direction and high frequency content 
in the horizontal direction. This spectral pattern matches the 
K21 kernel and is consistent with observations in Fig. 3 (b), 
where significantly more energy exists in the vertically 
placed wavelet coefficients at all levels. 

Based on these general observations of the print defects 
in the wavelet domain, several statistical metrics can be 
proposed for detecting and characterizing these defects. 
Since banding is a periodic phenomenon, statistics such as 
the autocorrelation function or the FFT can be applied to 
estimate the periodicity of the banding. The detection of a 
periodic banding process can be based on the magnitude or 
a series of related magnitudes in the autocorrelation or FFT. 
The strength of the banding and its likelihood of being 
observed can be related to the strength of the actual wavelet 
coefficients. For the purpose of illustration, this study 
considered a 3-level wavelet decomposition and 
reconstructed an image out of equally-weighted horizontal 
wavelet outputs, excluding y11. All other wavelet 
coefficients are set to zero. The reconstructed image is 
given by: 

(l −1) (n, m) =y11 
2 2 

(l ) (l )∑ ∑ ∑ ∑  wuv yuv (n − i / 2, m − j / 2)Luv (i, j), 
(3) 

1= =1 i ju v  

where Eq. (3) is applied recursively starting from the 
highest level to level zero. The weights corresponding to the 
HVS response are given by wuv, and the reconstruction 
kernel (analogous to the decomposition kernels in Eq. (2)) is 
given by L . The kernel indices are scaled down by 2 in the uv 

argument of the higher-level wavelet coefficients to indicate 
an upsampling (zeros are inserted for non-integer indices). 
The usefulness of this measure will depend on how well the 
wavelet filters separate out the critical banding features and 
quantify them in a way directly related to perception. In this 

(a) (b) 

Figure 3. (a) Streaking artifact, (b) 3-level Daubechies wavelet 
decomposition 

example the weights for y11 have been set to 0. This will 
create problems for the characterization of low frequency 
banding structures, while the HVS may not be as sensitive 
to the lower frequency structures, these low frequencies do 
make a contribution. However, for the sake of illustrating 
the frequency properties of the wavelet, this high-frequency 
band weighting system will be used. 

The autocorrelation can be applied to the average of the 
collapsed image along the horizontal direction, given by: 

1 M 
Ah (n) = ∑Yk (n, m) , (4)

M m=1 

where Yh is the zero-level image created from Eq. (3). The 
maximum peak position of the autocorrelation of Ah can be 
taken as the banding period estimate. The height of this 
peak can be used to detect a periodic component. The 
banding strength can be taken as the maximum peak to 
minimum peak of Ah within the period, and is given by: 

P = max[Ah (n)]− min[Ah (n)], (5) 

where n is within one period of the detected maximum. The 
P value quantifies the power level of the maximum contrast 
banding defect. Its correlation with human perception will 
depend on the choice of w in Eq. (3). Examples of Ah and uv 

its autocorrelation for the banding process in Fig. 1 are 
presented in Fig. 4. The Ah in Fig. 4 (a) shows the high 
frequency components of the banding defect. Much of the 
original image energy was filtered out (into y11) and reduced 
through the collapsed average. The autocorrelation in Fig. 4 
(b) shows a strong periodicity at 3.2 mm, which was the 
period of the banding defect. 

Graininess and streaking artifacts have been 
characterized by the NPS. In particular, the spectral roll-off 
characterizes the coarseness of the graininess pattern. The 
steeper the roll-off, the coarser the graininess pattern in the 
spatial domain. The slope of the spectral roll-off in the 
horizontal, vertical, and diagonal directions can characterize 
graininess and streaking defects. This corresponds to the 
power decrease in the wavelet coefficients in going from the 
highest level to the lowest level along these directions. 
Therefore, the slope of the least-squares line fit to the log of 
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Figure 4 a) Ah with banding artifact using biorthogonal spline 
wavelet b) autocorrelation of Ah 

the average power at each wavelet level (excluding the y11 

power) is used to characterize graininess pattern. Figure 5 
shows a line fitted the computed power (denote by the 
markers) in each wavelet level and orientation on streaking 
artifacts over a flat field. 

The slope of the best-line fit is sensitive to outlier data 
that may result from actual image structure or other defects 
present in the print. Therefore, a statistical test should be 
applied to the region under test to ensure the data is random. 
In other words, a random pattern should be detected first, 
before estimating parameters based on this assumption. The 
entropy or kurtosis is a good statistic for this. In general, 
random data (white or colored noise) will have high 
entropy. Low entropy is a sign of structure that may exist in 
the data. The kurtosis is the ratio of the fourth moment 
divided by the variance squared. For Gaussian data, the 
expected value of this ratio is 3. Therefore deviation of the 
kurtosis from 3 indicates the presence of outliers or 
structure as in this case. The simulations of the next section 
will use the kurtosis statistic to describe the randomness of 
the assumed graininess pattern. If the data cannot be 
considered random, then the slope has little meaning for the 
process being analyzed. Using the kurtosis as a detection 
statistic is analogous to detecting a periodic sequence with 
the autocorrelation coefficient before attempting to estimate 
a period. 
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Figure 5. (a) Log power of wavelet coefficients versus the 
center frequency of wavelet band with least-squares line fit. 

Monte Carlo Simulation 

Simulations were performed to test the ability of several 
different wavelets to efficiently model the print defects. 
Two general classes of discrete wavelets were applied. One 
class referred to as orthogonal, includes the Daubechies and 
symlet wavelets, the other class of wavelets, referred to as 
Biorthogonal include symmetric wavelets derived from 
spline functions. The coefficients for the wavelet FIR 
implementations are shown in Fig. 6. More details about 
these wavelets can be found in the literature.5,6 The 
Daubechies and symlet wavelets have very similar 
frequency responses, which are characterized as maximally 
flat; however, neither wavelet is symmetric which is often 
desired for image processing applications. Symlets are 
derived to have similar frequency properties as the 
Daubechies, except that they are as close to symmetric as 
possible in the space domain. In order to obtain a symmetric 
waveform and maintain orthogonality, the decomposition 
and reconstruction kernels must be different. These are 
referred to as biorthogonal wavelets. The 4 biorthogonal 
wavelets shown in Fig. 6 are derived from spline functions. 
The 4 were selected for this study to have 2 anti-symmetric 
wavelets Fig. 6 (e) and (f), and 2 symmetric wavelets, 
shown in Figs. 6 (g) and (h). The wavelet order is given in 
terms of 2 numbers, where the first number is the order of 
the decomposition wavelet and the second number is the 
order of the reconstruction wavelet. An increase in order 
implies more coefficients, which results in a smoother 
spatial function with greater localization in the frequency 
domain. 

Banding defect patterns were added to flat fields and 
white noise fields using a square, sine, and a measured 
banding waveform4 at 0, .1, 1, and 10% of the original 
image pixel value. In order to study the performance of the 
wavelet characterization in noise, no quantization was 
applied to the simulated images. Clearly, 8-bit quantization 
would add a level of noise 4 times greater than .1% level at 
the highest pixel value, and would become a significant 
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Figure 6: Wavelet functions for the symlet (a) 8th order (b)16th 

order, Daubechies (c) 8th order (d)16th order, spline with anti­
symmetry (e)order 3.3, (f) order 3.7, Spline with even symmetry 
(g) order4.4 (h) order 6.8. 

influence on performance. In order to focus on the potential 
wavelet performance, quantization was not performed. For 
each estimate in the Monte Carlo simulation, the banding 
pattern was applied with a random phase and an additive 
white noise component of –60 dB (the noise variance is 
equal to the amplitude of the 0.1 % banding). The 0% 
modulation (just additive noise) represented the baseline for 
determining detection statistic performance. The Ah was 
computed in each run, from which the autocorrelation was 
computed to obtain the peak value for the banding period 
estimate. The banding strength measure P was also 
computed. This was performed 8 times using the flat field 
and 8 times with the white noise field. 

For the detection of a square wave periodicity using the 
peak autocorrelation value, most wavelets performed 
extremely well for the flat field image with over 8 standard 
deviations (sd) of separation between the 0.1% and 0% 
banding. In the white noise field the 0.1 % banding was not 
detectable for any wavelet; however the 1% banding was 

detectable with a 2 sd separation in the worst case. The best 
wavelets in the white noise field were the 16th order symlets 
and the 3.3 biorthogonal wavelets resulting in a 5 sd 
separation or greater from the baseline. The true period was 
estimated with 100% accuracy for all wavelets where a 
period was detected. In terms of the estimated banding 
strength P, all wavelets accurately measured these values 
except for the 0.1% banding in the white noise field. If 
image energy was normalized, the P should equal the 
percent modulation of the banding. In most cases it was 
slightly less than this because of the loss of banding energy 
in the y11 wavelet coefficients, which were not used in the 
reconstruction statistics. In terms of relative performance, 
the 3.3 biorthogonal wavelet proved the most accurate 
estimate of P. 

For the detection of the sine wave banding, only the 
biorthogonal 3.3 and biorthogonal 4.4 wavelets were able to 
detect this periodicity for all modulation levels (greater than 
a 5 sd separation between the 0.1 and 0% banding). And in 
the white noise field only the 3.3 order biorthogonal wavelet 
was able to detect the 1% banding. In the flat field the 3.3 
order biorthogonal wavelet detected the correct period in all 
cases. In the white noise field, it tended to pick up a sub 
(half) period peak for the period estimate. Both 3.3 and 4.4 
order biorthogonal wavelets had the most accurate P 
estimate; however the 4.4 order wavelet did not respond to 
the 1% banding in the white noise field and neither wavelet 
responded to the 0.1% banding. Overall the P estimate was 
not close to the percent banding because the sine wave’s 
energy was highly localized in the low frequency y11 region, 
which was excluded from Ah. 

The banding for the measured waveform was detectable 
by all wavelets with over a 21 sd separation in the worst flat 
field case. In the white field, the 0.1% banding was not 
detectable for any wavelet; however, for the 1% banding the 
16th order symlet and the 3.7, 4.4 and 6.8 biorthogonal 
wavelets did the best with over a 6 sd separation. All 
wavelets accurately estimated detected periods, and P 
estimates were consistent with square wave results. 

The graininess and streaking simulations generated 
patterns as shown in Figs. 2 and 3 and added them on a flat 
field with –60db additive noise. For each estimate, 8 
independent (graininess and noise patterns) runs were made 
in the Monte Carlo simulation. Graininess patterns scaled by 
0, .1, 1, and 10% of the original pixel values were added to 
the original images. To simulate the effects of structure (non 
random features) on the estimated graininess parameters, 
estimates from 8 additional runs were performed with a 1% 
square wave added to the flat field. The first graininess 
pattern used a slope of -0.17 dB/(cycles/mm) as 
approximated from the graininess measurements2 in both the 
horizontal and vertical directions. The symlets and 
Daubechies wavelets both did a good job of estimating the 
actual slope of the graininess pattern in all directions for the 
10% and 1% graininess patterns, as predicted by other 
results.6 For the 0.1% graininess, the additive white noise 
biased the estimated toward 0 by about 10%. The 
biorthogonal wavelets did not perform well. The anti­
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symmetric wavelets could not discriminate between white 
noise and the graininess pattern even for the 10% 
modulation, and the other 2 biorthogonal wavelets were 
strongly biased toward zero with high variability overall. 
When structure was added with the 1% horizontal banding 
pattern, the symlets and Daubechies wavelets consistently 
estimated the slopes in the vertical and diagonal directions 
with good accuracy. The slopes in horizontal direction were 
strongly biased from the energy distribution in the square 
wave banding; however, for the 10% graininess pattern the 
values were only biased by about 10%, indicating that that 
graininess pattern significantly degraded the 1% structure. 

To detect a graininess pattern without structure (to get 
reliable estimates) the kurtosis of the wavelet coefficients 
was computed. When no structure was present, for all levels 
of graininess patterns the kurtosis values and their standard 
deviations were within .08 of 3, which clearly indicates 
random Gaussian data. When the horizontal structure was 
present with no graininess modulation (just additive noise), 
kurtosis for the horizonal wavlet coefficients was 1.4 points 
away from 3 with a standard deviation on the order of .05 
(i.e. 26 sd separation). As the graininess noise level was 
increased the kurtosis became closer to 3; however even for 
the 10% graininess pattern, it was still 1 sd away from 3. 

Similar simulations were run for streaking where the 
slope of the horizontal direction was set at -0.17 
dB/(cycles/mm) but the vertical direction was set at -0.86 
dB/(cycles/mm). A similar trend was observed as in the first 
simulation, except that the oval shape of the equi-power 
level of the NPS created a biasing on the vertical and 
horizontal estimates. For the vertical estimates from the 
symlet and Daubechies wavelets, the slope estimates were 
biased high by about 15% and the horizontal slope estimates 
were biased low by about 400% (strongly influenced by the 
low power in the vertical direction). The diagonal estimate 
was between the horizontal and vertical estimates, but much 
closer to the horizontal estimate due to the greater power in 
this direction. 

Conclusions 

The observed results for the banding defects indicate that 
the symlets performed consistently better over all 3 banding 
waveforms. The difficulty in estimating parameters related 
to the sine waveform was primarily due to the superior 
frequency localization of the Daubechies and symlet 
wavelets. The sine waveform, being highly localized in the 
frequency domain, had most of its energy in the y11 set of 
coefficients. This is why the low-order biorthogonal 
wavelets did the best on the sine wave, since they have the 
less frequency localization. The square wave and measured 
waveform parameters where estimated very consistently by 
the symlet and Daubechies wavelet, indicating that a 
significant portion of its energy was not frequency 
localized. While the biorthogonal wavelets did well for the 
sine wave, they were not as consistent for the square and 
measured waveform. For graininess noise the choice is 
clearly between the symlets or Daubechies wavelets. The 

biorthogonal wavelets did not perform well. In the case of 
graininess, good frequency localization is important to 
estimate the power in each octave band accurately. 

The simulation results suggest that symmetry is a good 
property for estimating banding defects. The lack of good 
frequency localization for the biorthogonal wavelets did not 
appear to impair its performance and even helped in the 
case of the sine wave banding. However, given the irregular 
shape of the measured banding profile, finding a wavelet to 
match the sine wave may not be an important concern. 
There was not a significant performance difference between 
the orders of the wavelets used in the simulation. In earlier 
simulations (not reported here), very low-order wavelets did 
not perform well. At an order of 4 or greater for the symlet 
and Daubechies began to perform well. If the order was too 
great, where the number of coefficients began to approach 
the period of the banding profile, significant errors began to 
occur in the banding period estimates. Therefore, the near 
symmetry as in the case of the symlet with sufficient 
smoothness was shown to be the best all around performer 
for print defect characterization. The good numerical 
performance of these wavelets would suggest a next level of 
work to compare these statistics for various wavelets with 
results from subjective studies. 
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